Article 8 – Coexistence and interplay of two ferroelectric mechanisms in Zn1-xMgxO

Abstract:

Ferroelectric materials promise exceptional attributes including low power dissipation, fast operational speeds, enhanced endurance, and superior retention to revolutionize information technology. However, the practical application of ferroelectric-semiconductor memory devices has been significantly challenged by the incompatibility of traditional perovskite oxide ferroelectrics with metal-oxide-semiconductor technology. Recent discoveries of ferroelectricity in binary oxides such as Zn1-xMgxO and Hf1-xZrxO have been a focal point of research in ferroelectric information technology. This work investigates the ferroelectric properties of Zn1-xMgxO utilizing automated band excitation piezoresponse force microscopy. Our findings reveal the coexistence of two ferroelectric subsystems within Zn1-xMgxO. We propose a „fringing-ridge mechanism” of polarization switching that is characterized by initial lateral expansion of nucleation without significant propagation in depth, contradicting the conventional domain growth process observed in ferroelectrics. This unique polarization dynamics in Zn1-xMgxO suggests a new understanding of ferroelectric behavior, contributing to both the fundamental science of ferroelectrics and their application in information technology.

 

Title: Coexistence and interplay of two ferroelectric mechanisms in Zn1-xMgxO

Authors: Jonghee Yang, Anton V. Ievlev, Anna N. Morozovska, Eugene Eliseev, Jonathan D Poplawsky, Devin Goodling, Robert Jackson Spurling, Jon-Paul Maria, Sergei V. Kalinin, Yongtao Liu

Reference: arXiv:2402.08852

DOI: https://doi.org/10.48550/arXiv.2402.08852

Related Posts

Article 10 – Electromechanical coupling in polaronic ceria

Abstract: Oxygen-defective metal oxides like cerium oxides exhibit giant electrostriction and field-induced piezoelectricity due to a dynamic electrosteric interplay between oxygen defects, V··O, and the fluorite lattice. While such mechanisms are generally attributed to oxygen vacancies, recent results also highlight that trapped cationic defects, Ce′Ce, i.e. small polarons, can contribute

Read more »

Article 9 – Strain-Polarization Coupling in the Low-Dimensional Van der Waals Ferrielectrics

Abstract: Using the Landau-Ginzburg-Devonshire phenomenological approach we explore the strain-polarization coupling in the low-dimensional van der Waals ferrielectrics. We evolve the analytical model of the piezoelectric susceptibility of the material in response to the periodic strain modulation, such as caused by a surface acoustic wave. Numerical calculations are performed for

Read more »

Article 8 – Coexistence and interplay of two ferroelectric mechanisms in Zn1-xMgxO

Abstract: Ferroelectric materials promise exceptional attributes including low power dissipation, fast operational speeds, enhanced endurance, and superior retention to revolutionize information technology. However, the practical application of ferroelectric-semiconductor memory devices has been significantly challenged by the incompatibility of traditional perovskite oxide ferroelectrics with metal-oxide-semiconductor technology. Recent discoveries of ferroelectricity in

Read more »

Article 7 – Ferro-ionic states and domains morphology in HfxZr1−xO2 nanoparticles

Abstract: Unique polar properties of nanoscale hafnia-zirconia oxides (HfxZr1−xO2) are of great interest for condensed matter physics, nanophysics, and advanced applications. These properties are connected (at least partially) to the ionic–electronic and electrochemical phenomena at the surface, interfaces, and/or internal grain boundaries. Here, we calculated the phase diagrams, dielectric permittivity,

Read more »

Article 6 – Tunable Ferroionic Properties in CeO2/BaTiO3 Heterostructures

Abstract: Ferroionic materials combine ferroelectric properties and spontaneous polarization with ionic phenomena of fast charge recombination and electrodic functionalities. In this paper, we propose the concept of tunable polarization in CeO2−δ (ceria) thin (5 nm) films induced by built-in remnant polarization of a BaTiO3 (BTO) ferroelectric thin film interface, which

Read more »

Article 5 – Size Effect of Negative Capacitance State and Subthreshold Swing in Van der Waals Ferrielectric Field-Effect Transistors

Abstract: Analytical calculations corroborated by the finite element modelling show that thin films of Van der Waals ferrielectrics covered by a 2D-semiconductor are promising candidates for the controllable reduction of the dielectric layer capacitance due to the negative capacitance (NC) effect emerging in the ferrielectric film. The NC state is

Read more »