Article 4 – Ferri-ionic Coupling in CuInP2S6 Nanoflakes: Polarization States and Controllable Negative Capacitance

Abstract:

We consider nanoflakes of van der Waals ferrielectric CuInP2S6 covered by an ionic surface charge and reveal the appearance of polar states with relatively high polarization ~5 microC/cm2 and stored free charge ~10 microC/cm, which can mimic „mid-gap” states associated with a surface field-induced transfer of Cu and/or In ions in the van der Waals gap. The change in the ionic screening degree and mismatch strains induce a broad range of the transitions between paraelectric phase, antiferroelectric, ferrielectric, and ferri-ionic states in CuInP2S6 nanoflakes. The states’ stability and/or metastability is determined by the minimum of the system free energy consisting of electrostatic energy, elastic energy, and a Landau-type four-well potential of the ferrielectric dipole polarization. The possibility to govern the transitions by strain and ionic screening can be useful for controlling the tunneling barrier in thin film devices based on CuInP2S6 nanoflakes. Also, we predict that the CuInP2S6 nanoflakes reveal features of the controllable negative capacitance effect, which make them attractive for advanced electronic devices, such as nano-capacitors and gate oxide nanomaterials with reduced heat dissipation

 

Title: Ferri-ionic Coupling in CuInP2S6 Nanoflakes: Polarization States and Controllable Negative Capacitance

Authors: Anna N. Morozovska, Sergei V. Kalinin, Eugene A. Eliseev, Svitlana Kopyl, Yulian M. Vysochanskii, and Dean R. Evans

Reference: arXiv:2405.14368 [physics.app-ph]

DOI: https://doi.org/10.48550/arXiv.2405.14368

Related Posts

Article 12 – Flexocoupling-induced phonons and ferrons in van der Waals ferroelectrics

Abstract: The contribution of flexoelectric coupling to the long-range order parameter fluctuations in ferroics can be critically important to the ferron dispersion and related polar, pyroelectric, and electrocaloric (EC) properties. Here, we calculate analytically the dispersion relations of soft optic and acoustic flexocoupling-induced phonons and ferrons by incorporating the flexoelectric

Read more »

Article 11 – Quantitative 3D Optical Birefringence in Peptide Bioelectrets

Abstract: Peptide nanotubes (PNTs) are bioelectrets that exhibit piezoelectricity, pyroelectricity, ferroelectricity, and birefringence. Birefringence is an optical property that can be used to determine the degree of order, orientation, size, and shape of PNTs. In this work, a custom-built optical apparatus is used to quantitatively measure birefringence in three dimensions

Read more »

Book Chapter 1 – Organic and Biological Piezoelectric Materials

Abstract: Natural organic piezoelectric materials have been the subject of intense research over the last couple of decades. This interest is due to their remarkable piezoelectric characteristics, biocompatibility, biodegradability, outstanding mechanical properties, and cost-effective fabrication processes. This chapter presents an extensive overview about the recent advances in natural organic piezoelectric

Read more »

Article 10 – Electromechanical coupling in polaronic ceria

Abstract: Oxygen-defective metal oxides like cerium oxides exhibit giant electrostriction and field-induced piezoelectricity due to a dynamic electrosteric interplay between oxygen defects, V··O, and the fluorite lattice. While such mechanisms are generally attributed to oxygen vacancies, recent results also highlight that trapped cationic defects, Ce′Ce, i.e. small polarons, can contribute

Read more »

Article 9 – Strain-Polarization Coupling in the Low-Dimensional Van der Waals Ferrielectrics

Abstract: Using the Landau-Ginzburg-Devonshire phenomenological approach we explore the strain-polarization coupling in the low-dimensional van der Waals ferrielectrics. We evolve the analytical model of the piezoelectric susceptibility of the material in response to the periodic strain modulation, such as caused by a surface acoustic wave. Numerical calculations are performed for

Read more »

Article 8 – Coexistence and interplay of two ferroelectric mechanisms in Zn1-xMgxO

Abstract: Ferroelectric materials promise exceptional attributes including low power dissipation, fast operational speeds, enhanced endurance, and superior retention to revolutionize information technology. However, the practical application of ferroelectric-semiconductor memory devices has been significantly challenged by the incompatibility of traditional perovskite oxide ferroelectrics with metal-oxide-semiconductor technology. Recent discoveries of ferroelectricity in

Read more »